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Resistance of Feynman diagrams and the percolation backbone dimension
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~Received 21 January 1999!

We present an alternative view of Feynman diagrams for the field theory of random resistor networks, in
which the diagrams are interpreted as being resistor networks themselves. This simplifies the field theory
considerably as we demonstrate by calculating the fractal dimensionDB of the percolation backbone to three
loop order. Using renormalization group methods we obtainDB521e/212172e2/926112e3@274 639
122 680z(3)#/4 084 101, wheree562d with d being the spatial dimension andz(3)51.202 057 . . . .
@S1063-651X~99!51206-3#

PACS number~s!: 64.60.Ak, 05.70.Jk, 64.60.Fr, 72.80.Ng
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Percolation has gained a vast amount of interest over
last decades~for a review, see, e.g.,@1,2#!. Though it repre-
sents the simplest model of a disordered system it has m
applications, e.g., polymerization, porous and amorph
materials, thin films, spreading of epidemics, etc. Conside
d-dimensional lattice where each bond is randomly occup
with probabilityp or empty with probability 12p. Occupied
and empty bonds may stand for different physical propert
Assume that occupied bonds are electrical conduc
whereas empty sites are insulators and that currents can
only between nearest neighbors. Suppose a potential di
ence is applied between two sitesx and x8 located on the
same cluster. In general not all bonds do carry nonzero
rent, since there may be dangling ends. This gives rise to
notion of the backbone. It is defined as the set of bonds
are connected to bothx andx8 by mutually nonintersecting
paths. Except for Wheatstone bridge type configurati
these are the bonds that carry nonzero current. The fra
dimensionDB of the backbone is defined near the critic
concentrationpc by MB;ux2x8uDB, whereMB denotes the
average number of bonds~the mass! of the backbone.

In this Rapid Communication we evaluateDB by renor-
malized field theory. Our approach is based on a field th
retic formulation of the randomly diluted nonlinear resist
network by Harris@3#, which itself was based on work b
Stephen@4# and Harris and Lubensky@5#. The aim of this
Rapid Communication is to present our interpretation
Feynman diagrams as being resistor networks themselve@6#
and to employ this interpretation to deriveDB up to third
order ine562d.

Consider a nonlinear generalization of the random resi
network as proposed by Kenkel and Straley@7#. The bonds
between sitesi and j obey a generalized Ohm’s law

Vj2Vi5r i , j I i , j uI i , j ur 21 ~1!

or equivalently

s i , j~Vj2Vi !uVj2Vi us215I i , j , ~2!

wheres i , j (r i , j ) is the nonlinear conductance~resistance! of
the bond,I i , j is the current flowing through the bond, andVi
is the potential at sitei. The exponentsr ands are describing
the nonlinearity withr 5s21.
PRE 591063-651X/99/59~6!/6239~4!/$15.00
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The powerP dissipated on the backbone betweenx andx8
of this nonlinear network reads

P5UI 5Rr~x,x8!uI ur 11, ~3!

where U denotes the voltage between the two ports,I the
resulting current, andRr(x,x8) the resistance of the back
bone. On the other hand we may write

P5(
i , j

uVj2Vi uI i , j5(
i , j

r i , j uI i , j ur 11, ~4!

where the sum is taken over all bonds on the cluster. T
limit r→21, taken from above, provides for a convenie
way of summing up all conductors carrying nonzero curre

R21~x,x8!5(
i , j

r i , j . ~5!

We restrict ourselves to the case that all conductors h
identical resistancer. Hence,R21 is proportional toMB and
DB is identical to lim

r→21
f r /n, wheren is the correlation

length exponent andf r is the resistance exponent defined
Mr5^x(x,x8)Rr(x,x8)&C /^x(x,x8)&C;ux2x8ufr /n. ^•••&C
denotes the average over all configurations of the dilu
lattice andx(x,x8) is an indicator function that takes th
value one ifx andx8 are on the same cluster and zero o
erwise.

The resistanceRr(x,x8) can be obtained by solving th
circuit equations

(
j

s i , j~Vi2Vj !uVi2Vj us215I i , ~6!

where I i5I (d i ,x2d i ,x8). The circuit equations may be
viewed as a consequence of the variation principle

]

]Vi
F 1

s11
P~$V%!1(

j
I jVj G50, ~7!

where$V% denotes the set of voltages belonging to the s
of the backbone. Obviously the backbone may contain clo
loops as subnetworks. Suppose there are currents$I ( l )% cir-
culating independently around these closed loops. Then
R6239 ©1999 The American Physical Society
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power is not only a function ofI but also of the set of loop
currents. Conservation of charge holds for every ramificat
of the backbone, and this gives rise to another variation p
ciple,

]

]I ( l )
P~$I ( l )%,I !50. ~8!

Equation~8! may be used to eliminate the loop currents a
thus provides us with a method to determine the total re
tance of the backbone via Eq.~3!.

A field theory for the nonlinear random resistor netwo
was set up by Harris@3# in analogy to the linear model@4,5#.
In order to overcome difficulties associated with^•••&C one
employs the replica technique@8#. The network is replicated
D fold: Vx→VW x5(Vx

(1) , . . . ,Vx
(D)). One considers the corre

lation function G(x,x8;lW )5^clW (x)c2lW (x8)& rep of clW (x)

5exp(ilW•VW x), wherelW •VW x5(al (a)Vx
(a) andlW Þ0W :

G~x,x8;lW !5K Z2DE )
j

)
a51

D

dVj
a expS 2

1

s11
P~$VW %!

1 ilW •~VW x2VW x8! D L
C

. ~9!

Here P($VW %)5( i , j ,as i , j uVi
(a)2Vj

(a)us11 and Z is the usual
normalization. In contrast to the linear networkP is not qua-
dratic, and hence the integration is not Gaussian. As a w
ing hypothesis we assume that a saddle point approxima
is justified. For details and conditions to be imposed onlW ,
see@3#. The saddle point equation is nothing more than
variation principle stated in Eq.~7!. Thus, the maximum of
the integrand is determined by the solution of the circ
equations~6! and, up to an unimportant constant,

G~x,x8;lW !5 K expS L r

r 11
Rr~x,x8! D L

C

5^x~x,x8!&CS 11
L r

r 11
Mr~x,x8!1••• D ,

~10!

whereL r5(a51
D (2l (a)2)(r 11)/2. Note that the limitD→0

has to be taken beforer→21 for Eq. ~10! to be well de-
fined. Contact to the Potts model can be established
switching to voltage variablesuW 5DukW taking discrete values
on a D-dimensional torus, i.e.kW is chosen to be a
D-dimensional integer with 2M,k(a)<M and k(a)

5k(a) mod(2M ). In this discrete picture there are (2M )D

21 independent state variables per lattice site, and one
troduces the Potts spins

FuW~x!5~2M !2D (
lW Þ0W

exp~ ilW •uW !clW ~x!5duW ,uW x
2~2M !2D

~11!

subject to the condition(uWFuW(x)50.
n
-
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The replication procedure induces the effective Ham
tonian

H rep52 lnK expS 2
1

s11
PD L

C

, ~12!

which may be expanded in terms ofc,

H rep52(
x,x8

(
lW Þ0W

K~lW !clW ~x!c2lW ~x8!. ~13!

Next the kernel is Taylor expanded in the limit of larges,

K~lW !5t2wL r , ~14!

with t andw;s21 being expansion coefficients and high
order terms are neglected sinceH rep is decaying exponen
tially. By defining the discrete derivative]/]u (a) through

2(
uW

FuW~x!
]2

]u (a)2
FuW~x!5 (

lW Þ0W
l (a)2clW ~x!c2lW ~x!,

~15!

one obtains upon Fourier transformation

K~DuW !5t2w~DuW !(r 11)/2. ~16!

To set up a field theoretic HamiltonianH we proceed with
the usual coarse graining step and replace the Potts s
FuW(x) by the order parameterw(x,uW ) defined on a
d-dimensional spatial continuum. Constructing all possi
invariants of the symmetries of the model from(uWw(x,uW )p

(p denotes some power.1) and gradients thereof leads
the following Hamiltonian in spirit of the Landau-Ginzburg
Wilson functional~for details see@6#!:

H5E ddx(
uW

H t

2
w21

1

2
~¹w!22

w

2
w~DuW !(r 11)/2w1

g

6
w3J ,

~17!

where terms of higher order in the fields have been negle
since they turn out to be irrelevant in the renormalizati
group sense. Note thatH reduces to the usual Potts–mod
Hamiltonian by settingw50.

Now we set up a diagrammatic expansion. Contribut
elements are the vertex2g and the propagator

12dlW ,0W

p21t2wL r

5
1

p21t2wL r

2
dlW ,0W

p21t
. ~18!

Equation ~18! shows that the principal propagator decom
poses into a propagator carryinglW ’s ~conducting! and one
not carryinglW ’s ~insulating!. This allows for a schematic
decomposition of principal diagrams into sums of diagra
consisting of conducting and insulating propagators. Her
new interpretation of the Feynman diagrams emerges@6#.
They may be viewed as resistor networks themselves w
conducting propagators corresponding to conductors and
sulating propagators to open bonds. Schwinger parametesi

of conducting propagators correspond to resistancess i
21 and

the replica variablesilW i to currents. The replica currents a
conserved in each vertex and we may writelW i5lW i(lW ,$kW %),
where lW is an external current and$kW % denotes the set o
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independent loop currents. ThelW -dependent part of a dia
gram can be expressed in terms of its powerP,

expS w(
i

siL ri D 5exp@wP~lW ,$kW %!#. ~19!

Our interpretation suggests an alternative way of comp
ing the Feynman diagrams. To evaluate sums over inde
dent loop currents

(
$kW %

exp@wP~lW ,$kW %!# ~20!

we employ the saddle point method. Note that the sad
point equation is nothing more than the variation princip
stated in Eq.~8!. Thus, solving the saddle point equations
equivalent to determining the total resistanceR($si%) of a
diagram, and the saddle point evaluation of Eq.~20! yields

exp~Rr~$si%!wL r !. ~21!

A completion of squares in the momenta renders the mom
tum integrations straightforward. Thereafter all diagrams
of the form

I ~p2,lW 2!5I P~p2!1I W~p2!wL r1•••

5E
0

`

)
i

dsi@11Rr~$si%!wL r1•••#

3D~p2,$si%!, ~22!

whereD(p2,$si%) is a usual integrand of thef3 theory. The
f3 theory was investigated to three loop order by de Alca
ara Bonfimet al. @12#, and hence the remaining task is
calculate the contributions proportional tow.

In order to check if our working hypothesis holds w
performed two loop calculations for the casesr→0 and r
→` and compared to known results. In the limitr→0 the
resistance between two points becomes essentially equ
the length of the shortest paths between these points.
mapped our diagrams onto those studied by one of us~Jan-
ssen@9#! and obtained exactly the same diagrammatic exp
sion. Consequently, our result for the exponent governing
so-called chemical distance dmin522e/62@937/588
145/49(ln 229/10 ln 3)#(e/6)21O(e3), e562d, is the
same as given in@9#. The limit r→` is related to the red
~singly connected! bonds. Our calculation gives unity for th

FIG. 1. The diagrams we computed to determineDB . The lines
stand for conducting propagators; the solid dots stand for1

2 w2 in-
sertions.
t-
n-

le

n-
e

t-

to
e

n-
e

corresponding exponent in accordance with results by B
menfeld and Aharony@10# and de Arcangeliset al. @11#. We
rate these two loop results as a strong indication for the
lidity of the saddle point approach.

Now we turn to the calculation ofDB . In the limit
r→21 only the nonplanar diagrams listed in Fig. 1 contri
ute to the diagrammatic expansion. We use dimensio
regularization and renormalizew→Z21Zww. By employing
minimal subtraction to compensatee poles we obtain

Zw511
u2

4e
1

u3

e2 F 7

12
2

29

144
e2

2

3
z~3!eG1O~u4!,

~23!

whereu}g2m2e, with m being an inverse length scale. No
that all nonprimitive divergencies are cancelled as renorm
izability of the perturbation expansion requires. The critic
exponents are determined by the Wilson functionsg . . . (u)
5m(]/]m)ln Z . . . evaluated at the infrared stable fixed poi
u* . In particular we are interested inh5g(u* ) and c
5gw(u* ) governing the scaling relation

G~ ux2x8u;w!5 l d221hG~ l ux2x8u;w/ l 22h1c!, ~24!

wherel is a inverse length scale.h was calculated to ordere3

in @12#. For c we find

c522S e

7D 2

1F16z~3!2
2075

126 G S e

7D 3

1O~e4!. ~25!

The choice l 5 lx2x8l 21 and a Taylor expansion of th
right-hand side of Eq.~24! lead to

G~ ux2x8u;w!5ux2x8u22d2h~11wux2x8u22h1c1••• !.
~26!

From Eqs.~26! and ~10! it follows that

FIG. 2. Dependence of the exponentc on dimensionality. The
rational approximation~triangles! is compared to numerical result
~circles! by Grassberger (d52) and Moukarzel (d53,4). They de-
terminedDB522h1c5g/n1c by simulations. Ford52 we in-
sert the exact values@16,17# n54/3 andg543/18. Ford53 we use
Monte Carlo results by Ziff and Stell@18#: n50.87560.008, g
51.79560.005. Ford54 we taken2151.4460.05 @15# and g
51.44 @2#.
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DB522h1c521
1

21
e2

172

9261
e2

12
274 639122 680z~3!

4 084 101
e31O~e4!. ~27!

Note that our result agrees to second order ine with calcu-
lations by Harris and Lubensky@13# based on another ap
proach. This is again in favor of our working hypothesis.

We compare our result to numerical simulations by Gra
berger@14# and Moukarzel@15#. Due to the rich structure o
h in the percolation problemc might be better suited fo
such a comparison thanDB . It is known exactly thatc van-
ishes in one dimension. This feature is incorporated b
rational approximation yielding

c'2
2e2

49 S 12
e

5D S 111.2625
e

500D , ~28!
s

-

a

which is compared to simulations in Fig. 2. Ford54 the
results agree within the numerical errors. However, a hig
accuracy of the numerical estimate is desirable. Ford53
and d52 the analytic result looks less realistic and the n
merical values are larger. The shape of the dependencec
on dimensionality is much the same.

We conclude with a few comments. Our interpretation
the Feynman diagrams simplifies calculations considera
The technique used here can be applied to study other
pects of transport on percolating clusters. Ind54 our result
for DB agrees with recent numerical simulations. For dime
sions close to the upper critical dimension 6, our result is
most accurate analytical estimate forDB that we know of.
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